RoofViews

Building Science

The Benefits of 12-Foot TPO — What You Need to Know

By Thomas J Taylor

August 23, 2017

RhinoPlate TPO installation

How Designers & Super Crews Can Maximize Roofing Efficiency

This case study looked at how a roof system designer, working with an expert crew, can both increase roofing efficiency and offer performance advantages to the building owner.

Case Study

Roof Project

Description of Building — The building used for this evaluation was single story big box type, less than 40 feet in height, with a roof area of 125,000 ft2 in a rectangular configuration 290 × 431 ft. The roof was assumed to be a new installation, i.e. new construction or a total roof replacement.

Roof Membrane — Two membranes were evaluated; 10 foot and 12 foot wide TPO. The 12 foot wide sheet has lower wind uplift resistance versus the 10 foot sheet for equivalent mechanical fastener patterns. In general, for wind uplift resistance of I-105 or higher, either induction welded or adhesive attachment would likely be required given common installation components and methods.

Membrane Attachment — Five scenarios were examined:

  • Case 1: 10 ft TPO mechanically attached
  • Case 2: 12 ft TPO induction welded attachment (RhinoBond)
  • Case 3: 10 ft TPO adhered, using solvent based adhesive
  • Case 4: 12 ft TPO adhered, using solvent based adhesive
  • Case 5: 10 ft TPO induction welded attachment (RhinoBond)

Polyiso Attachment — In each case, the polyiso was mechanically attached.

Fastening Patterns and Membrane Layout — For buildings with widths greater than 200 feet, regardless of height, the following is used to calculate the perimeter size:

The width of the perimeter region is defined as the least of the following two measurements:

0.1 x building width or 0.4 x building height

For this building, 0.1 x 290 = 29.0 ft and 0.4 x 40 = 16 ft. Therefore, the perimeter was set as 16 ft, meaning two boards of polyiso and three TPO half sheets.

The fastening patterns per 4 x 8 ft polyiso board varied by case as shown in the table below from GAF's Architectural Details Handbook:

handbook


Membrane Use — Every roof has its own unique challenges when laying out membrane. Good estimators, crews, and designers are skilled at arranging the membrane sheets to avoid unnecessary waste. For this case study, it was assumed that waste membrane is minimal and that differences between the 10 and 12 ft cases can be ignored. Membrane-use calculations were based on the roof area, and didn't include any parapet walls. All welds were assumed to have 6" overlap.

Fastener Use — For the mechanically attached Case 1, it was assumed that the screws and plates are 6" OC. For the RhinoBond and polyiso attachment, the table above was used.

Results

For each Case, the following were calculated for this 125,000 s.f. roof:

  • Total area of TPO required. This was the roof area plus the area required for edge and end seams.
  • Seam length, i.e. the total number of linear feet for all the seams.
  • Cost of screw and plate fasteners, including insulation fasteners, membrane fasteners, and RhinoBond plates when used.
  • Adhesive cost, based on a traditional solvent based adhesive.

Note that the material costs represent an average and will vary depending on region and job size etc.

Material Cost — The RhinoBond attachment combined with a 12 ft sheet is only slightly more expensive than a 10 ft mechanically attached (MA) sheet and is lower cost than the 10 ft RhinoBond system as shown here:


The difference in material usage is due to the reduced number of seams.

Labor Cost — While labor costs in monetary terms are hard to estimate, due to regional differences in labor rates, quantity of installers, experience levels of crews, etc, comparisons of the number of fasteners and seam lengths can indicate where savings are to be had.

The number of fasteners for each case is shown here:


It's clear that the traditionally low cost mechanical attachment process requires significantly more fasteners than any other approach.

The topic where a 12 ft sheet is expected to do well is in terms of total seam length, shown for each Case below:


As can be seen, Case 1 with its perimeter half sheets has a far longer total seam length than the other systems. Comparing Cases 2 and 4 versus Cases 3 and 5 shows the advantage of a 12 ft sheet. In this case study, it reduced seam length by about 20% compared to a 10 ft. sheet for adhered or RhinoBond attachment.

Overall Material Cost


Super Crew Benefits — the 12 ft. sheets reduce welded seam lengths by about 20%, which improves installation efficiency. However, in combination with RhinoBond a super crew can increase efficiency even more:

  • GAF Architectural Detail 307B allows the crew to use the deck sheet as flashing on walls and curbs when using RhinoBond attachment. This eliminates having to weld all of the wall flashings and some curb flashings, depending on the roof size. The crew no longer has to cut down a roll to be added later to flash in the walls and curbs. This reduces the risk of having to clean the deck membrane and makes it easier to close-in a section of the roof by day's end.


  • An experienced crew of the right size can lay out the membrane to eliminate many of the field hand welding, stop/starts, and angle change welds.
  • When roofing a section of a large roof, the main concern at the end of the day is making sure that section is watertight. Detail 307B enables more squares to be laid and secured by the end of the day. Every component of that section might not be completed but at least it can provide protection against moisture infiltration.

Conclusions

A 12 ft. TPO membrane combined with RhinoBond attachment offers several advantages:

  • Increased installation efficiency due to reduced seam length, reduced overall TPO use, and fewer fasteners compared to a traditional mechanically attached system.
  • Wind uplift performance is improved as compared with a traditional mechanically attached system, approaching that of adhered systems.
  • Warranty or guarantee length of a RhinoBond system may be longer than a traditional mechanically attached system.
  • Billowing caused by high wind events is significantly reduced or eliminated.


Note — this analysis was for a generalized roof and didn't include considerations of parapet wall areas or penetrations etc. Always do your own calculations and material usage estimates before making decisions about system design.

The author wishes to thank Mark Lienemann of the GAF CARE team for insights provided to this analysis.

About the Author

Thomas J Taylor, PhD is the Building & Roofing Science Advisor for GAF. Tom has over 20 year’s experience in the building products industry, all working for manufacturing organizations. He received his PhD in chemistry from the University of Salford, England, and holds approximately 35 patents. Tom’s main focus at GAF is roofing system design and building energy use reduction. Under Tom’s guidance GAF has developed TPO with unmatched weathering resistance.

Related Articles

A commercial roof drain.
Commercial Roofing

The Importance of Commercial Drain Maintenance

A low-slope commercial roofing system is responsible for keeping the elements out of the building. During heavy rain, water with nowhere else to go may pond on the roof. A roof drain prevents water from ponding by providing a way for it to leave the roof, and regular commercial drain maintenance ensures its continued performance.Although commercial buildings may appear to have flat roofs, some roofs have slopes built into the structure or require added slopes, typically achieved with tapered insulation to facilitate water drainage. This slope is designed to guide water to a drain, so it doesn't sit on the roof and damage the roofing system or structure. Standing water can slowly deteriorate certain roofing materials and cause premature degradation, failure, or damage. It can also promote algae and plant growth and attract nuisances such as birds and insects.Guiding Water off the RoofResidential roofs have gravity on their side—water flows down the slopes into gutters that transport it away from the home. Commercial buildings with low-slope roofs have to work a little harder to remove water, which is where roof drains come into play.The roofing system design can help guide water toward the drains. It often involves using tapered insulation such as GAF EnergyGuard™ tapered polyiso insulation. The two most popular tapered boards deliver a 1/8-inch or 1/4-inch per foot slope. This slight slope prevents water from standing on the roof, forcing it toward a drain strategically installed at various low points on the roof with crickets and saddles.Drain placement is particularly essential when the parapet wall sheds water. To help water arrive at the drain line or gutter, tapered crickets are typically installed in corners and between drains to direct the flow and alleviate ponding. This water must flow down the roof side of the parapet wall and follow the roof slope to reach the drain.3 Common Types of Roof DrainsInner DrainsInner drains are connected to sloped pipes under the roof that carry water off the roof and away from the building. They typically rely on gravity and the roof's slope to get water to the drain.ScuppersScuppers are found at the roof's edge, usually installed through a hole in the parapet wall. They're designed to drain water from the roof into a downspout or may extend out from the building to shed water.Siphonic DrainsSiphonic drains feature a baffle that keeps air out and allows water to fill the pipes. Once the pipes are full, the lack of air creates a vacuum that siphons water from the roof at a high velocity. The baffle also keeps leaves and debris from gathering in the drain and causing a blockage.Caring for and Maintaining Roof DrainsInspecting and maintaining roof drains should be part of your regular roof inspections. Because roof drains are located at low points on the roof, it's easy for debris or leaves to build up in these areas. Clearing debris is essential for the drains to function properly. Clogs encourage pools of water to form on the rooftop, which can cause structural issues for the building. Even just an inch of standing water can add thousands of pounds of weight to the roof, reinforcing the need for regular commercial drain maintenance.Advancing Roof Drain Maintenance with TechnologyGAF recently introduced the Steely Drain™. This is a roof drain solution that leverages technology allowing contractors to build their maintenace relationship by setting up building maintenance reminders to contact building owners or facility managers. This contractor-inspired drain is made of 316L marine-grade stainless steel, making it ideal for tough environments that require exceptional corrosion resistance.Steely Drain™ features a QR code etched onto the top that you can scan with your smartphone to instantly view information about the roofing system. This data can include the contact information of the contractor who installed the system, the architect and consultants for the project, and the roofing system details if all information is inputted.This critical data is managed from a convenient GAF-hosted dashboard and plays an important role in the roof's maintenance plan. Contractors can set up and receive email reminders when it's time to perform scheduled roof and drain inspections. The dashboard also eliminates the need for core cuts since every detail of the roofing system is available through the QR code—from the deck type to the cover board, underlayment, insulation type and thickness, to the final membrane.Knowledge Is Key to SuccessWhen properly installed and maintained, roof drains can keep the rooftop free of standing water for many years. Curious to learn more? Explore how the Steely Drain™ can help you with your ongoing maintenance programs. You can also visit the GAF CARE Contractor Training Center to gain additional tips and access valuable training courses that allow you to learn at your own pace.

By Authors Karen L Edwards

August 29, 2024

Roofers install GAF EverGuard® TPO Quick-Spray Adhesive on a flat roof
Commercial Roofing

Minimizing Disruption When Repairing Roofs on Schools and Hospitals

As a roofing contractor, you know how noisy roofing projects can get. And when repairing or replacing roofs on institutional properties, like schools and healthcare centers, it's often not possible to remove occupants during the project's duration.Accordingly, minimizing disruption at these facilities is key, as students need to be able to concentrate and patients must be protected as they recover. Here are common disruptions to consider and how to reduce them, with insight from GAF Building and Roofing Science Research Lead, Elizabeth Grant.Common Disruptions on Construction SitesYou have several challenges to consider when working on schools or other facilities with ongoing operations, including noise, odors, and occupants' safety.Elevated VolumeHeightened noise levels can affect both students and patients. At schools, loud sounds can affect students' ability to learn and concentrate. Likewise, construction noise can impact patients' ability to rest and recuperate in healthcare facilities.Strong OdorsWhen using certain roofing materials on big job sites—like powerful adhesives or hot-mopped roofing systems—odors may infiltrate the building. This may be distracting and affect the comfort of students and patients.Heavy MachineryUnloading and staging material can also cause disruption, as materials must be staged onsite to be ready for installation as the job progresses. This often involves using heavy equipment, such as cranes and lifts. Proper safety protections must be in place to ensure worker and occupant safety.Roofing Products That Minimize DisruptionUnfortunately, there's no good time for a roof repair or replacement at a medical facility. You may be able to complete school projects when school is out of session, but that isn't always the case if a leak or storm damage occurs.The best (and most proactive) way to minimize disruption is to use durable, long-lasting materials, as this reduces the number of times crews need to work on the roof.Single-Ply MembranesGrant recommends a robust single-ply membrane or a system with some redundancy, such as a multi-ply modified bitumen. She also suggests leveraging a hybrid system, composed of a multi-ply modified bitumen system with a single-ply top sheet for reflectivity.Cover and Substrate BoardsFor resiliency against noise-causing conditions such as hail and foot traffic, Grant suggests using cover and substrate boards. Cover boards are installed on top of the insulation and provide sound insulation, while substrate boards are installed directly on the roof deck under the insulation."If you have a really noisy location, and you want to keep people inside from hearing a lot of disruption, having cover and substrate boards included in the system can be really important," says Grant.Adhesives and FastenersAnother change you can make to reduce disruption is using adhesive to attach roofing products instead of mechanically fastening them. This helps avoid the noise from driving fasteners into the roof deck—and enables a faster installation.Grant notes that, depending on the FM and wind ratings required, it may be possible to adhere all the system components, including the insulation, cover boards, and membrane. An adhesive like GAF EverGuard® TPO Quick-Spray Adhesive can effectively adhere TPO and PVC roofing materials. The product has a high initial tackiness, allowing for faster installation than traditional adhesives. You can also opt for self-adhering products (vapor retarder, pipe boots, TPO roofing, etc.), which can further reduce installation time by eliminating adhesive application from the process.Materials That Shorten Project TimelinesA creative and efficient way to minimize disruption at school and hospital job sites is to reduce the time crews are on the roof. By taking advantage of time-saving materials, you can reduce the risk to workers and occupants, increase productivity, and ultimately take on more work.In addition to the Quick-Spray Adhesive, GAF offers several materials designed to cut installation time and labor:Wider rolls of TPO (12 feet instead of 10 feet) can help crews to spend less time installing systems on wide-open roofs.Insulation installation is easier with lightweight Ultra HD Composite Insulation, and it eliminates the need for one full application of adhesive in adhered systems.TPO self-adhered membrane can cut installation time by as much as 60% compared to installation using traditional bucket and roller adhesives.Experienced Support That Streamlines WorkIn addition to product and material selection, you can minimize disruptions by having GAF professionals from the Tapered Design Group help design the tapered insulation system. These professionals can help you with a variety of services, such as:Tapered insulation designTapered insulation Inventory management and orderingBudget friendly alternativesTapered insulation systems are designed to improve the drainage slope on roofs with substrate damage or without enough slope. The tapered design team at GAF "balances suitable slope with the least amount of material," Grant says. "To help with saving money, saving material, and saving time."This group designs tapered insulation systems that can be loaded and labeled strategically to minimize material handling and time spent looking for and transporting materials. Products are bundled by roof area, and a color-coded plan distinguishes areas for each bundle. Materials are precut and specifically designed for each project.Additional Tools to Save Time and LaborTwo other GAF tools can help you reduce the time spent on projects: GAF QuickSite™ and GAF QuickMeasure™.GAF QuickSite™GAF QuickSite™ provides the information you need before approaching a potential customer. It gives you a snapshot of local codes (important if you're working in an unfamiliar location), a 10-year wind and hail history, historical photographs documenting changes over time, and parcel information (including size and sales dates).GAF QuickMeasure™GAF QuickMeasure™ provides complete roof measurements including parapet wall lengths, heights and widths to help create estimates, past views showing how a roof may have changed over time, grid-lined paper for buildings with predominate pitch of 0 or 1, and a DXF file output for CAD.With the help of GAF QuickSite™, GAF QuickMeasure™, and the Tapered Design Group, you can confidently give your healthcare clients and school customers accurate estimates for suitable roofing products to meet their needs. These tools can also minimize disruption to building occupants and help building owners select durable, long-lasting products that will protect their investments for years to come.Leveraging GAF Professionals' ExperienceWhen working on schools, hospitals, and other important institutions, you're working to satisfy not only your clients but the individuals visiting these locations. By minimizing disruption, you can help ensure everyone involved experiences minimal disruption while you complete the project.For more insight into time- and labor-saving products and services, explore GAF School Rooftop Resources.

By Authors Dawn Killough

August 29, 2024

Roofers install a GAF EverGuard PVC roofing system.
Commercial Roofing

How PVC Experts Can Help Design Specialized Roofing Projects

With the growing popularity and versatility of PVC roofing systems, GAF has responded by building a team of PVC experts to aid architects, specifiers, and the design community in project success. These highly trained and experienced professionals offer 1:1 support to help answer customers' questions and unique needs when working with PVC on roofing projects, and are here to help you!PVC, or polyvinyl chloride, is a single-ply thermoplastic roofing membrane. The material's characteristics help it thrive in particularly challenging applications. In fact, PVC roofing systems have a proven track record in the US, first introduced in the 1970s after making their debut in Germany a decade earlier.Here's a look at the benefits of PVC roofing systems as well as the guidance and support offered by the PVC experts at GAF.PVC Roofing Advantages and ApplicationsWhile several materials are available for use in roofing systems, PVC has been identified as a particularly long-lasting option. Accordingly, it's steadily grown in popularity nationwide.David Allor, senior area PVC specialist, joined the GAF team in 2022 as a PVC expert. His role was created specifically to support roof designers. Allor has an extensive background in the commercial roofing industry and extensive knowledge about PVC as a high-performance roofing solution."The industry refers to it as a very spec-driven product, and I believe what they're speaking to is a specifier's preference to work with a product that's been well established in the market and field tested," Allor shares. "It has the ability to provide protection against chemical exposure* and stand up well to challenging environments."While PVC may be a spec-driven product, it's also application-driven. Allor explains that PVC roofs may help provide protection for restaurants, food manufacturers, and packaging plants—any facility using animal fats where oils may be exhausted.* He also says that even if the building itself isn't exhausting gases, grease, or chemicals, it's important to consider the buildings and structures that surround it, as their exteriors may be subjected to exhaust that could degrade roofing systems.*Supporting the Design CommunityAs North America's largest roofing materials manufacturer, GAF has equipped teams with the resources and specialists needed to supply customers with more than just products. In recent years, the company built a solid team of PVC specialists that cover the entire US. These specialists assist customers with PVC specifications, roof system designs, and whatever else designers need to ensure successful project outcomes.Whether your project or design firm is based in the Northeast, Southeast, Southwest, Midwest, or West Coast, a PVC specialist is positioned to help. Allor explains the team of GAF PVC specialists is active in the organizations specifiers belong to, including the American Institute of Architects, the Construction Specifications Institute, and the International Institute of Building Enclosure Consultants.Allor describes the team's role as supporting the customer and connecting them to other GAF project support teams that can help. For instance, he said he called on a leading architectural design firm in the Boston area—and two months later, someone reached out for assistance with a specific project needing a tight turnaround."Literally within 12 hours of them reaching out to us, we replied and committed to three pertinent deliverables, those being a Tapered ISO Design Package, an Assembly Letter confirming all FM Requirements, and last but not least, a conference call the next day with the Building and Roofing Science team to go over three critical transitional details." Allor says.Committing to Successful Project OutcomesThe PVC specialists at GAF are focused on one goal: helping architects, specifiers, and the roofing design community achieve successful project outcomes through a high-performing PVC roofing system. With professionals like Allor providing insight and guidance, you can rest assured your PVC project will be in good hands.Ready to get started on your next PVC roofing project? Explore the different PVC roofing solutions available, and visit this page to find your local PVC roofing specialist who is ready to assist you.*GAF warranties and guarantees do not provide coverage against exposure to chemicals, grease, oils, animal fats or exhaust. Refer to gaf.com for more information on warranty and guarantee coverage and restrictions.

By Authors Karen L Edwards

April 22, 2024

Don't miss another GAF RoofViews post!

Subscribe now